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Classification Problem Statement 1

<N

za
B

= Given a set of points £ = {x,...,x,} € R?

and for each such point alabel y; € {l, b, ..., I,}

= Each label represents a class, all points with the same label are in the
same class

= Wanted: a method to decide for a not-yet-seen point x which

label it most probably has, i.e., a method to predict class labels

= We say that we learn a classifier C from the training set L:

C:RY = {h,b,... L}

= Typical applications:

= Computer vision (object recognition, ...)

= Medical diagnosis

= Credit approval (?)

Physician
Comment:

lomain w;ﬁhﬁ-m Sept 17, 2004

. T 2 o o eniy e ubl domin gfained rom
Jurisdiction * Ulcer/tumor or not?

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 3



Bremen

Y

O
..
<N
0
oy e ]

One Possible Solution: Linear Regression

= Assume we have only two classes (e.g., "blue" and "yellow")
= Fit a plane through the data
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@ Another Solution: Nearest Neighbor (NN) Classification i

= For the query point x, find the nearest neighbor x* € {xy,...,x,} € R¢

= Assign the class [* to x
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X2

Y

X1
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@ Parallelization

= Trivially:
= Each thread computes distance || x; — x || and stores it in an array

= All threads perform min reduction
= Can you think of a more clever way?

= What if we have a million queries?
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@ Improvement: k-NN Classification

= Instead of the 1 nearest neighbor, find the k nearest neighbors of
X, {X;,,....,x; } C L
= Assign the majority of the labels {/;,... [, } tox
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Y More Terminology

" The coordinates/components x;; of the points x; have special
names: independent variables, predictor variables, features,

attributes, ...
= Specific name of the x;; depends on the domain / community

= The space where the x; live (i.e., R?) is called feature space

= The labels y; are also called target, dependent variable, response
variable, ...

= The set L is called the training set / learning set (will become
clear later)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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W Decision Trees

= Aristotle first described the concept systematically, in order to
classify all living things

Does it fly?
Branches represent different
values of a feature yes w)

Does it have
fish scales?

Does it have
feathers?

yei/ \‘no yei/ \TO

Ve
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Each node tests one or more feature(s)
This is sometimes called a weak classifier

Leaves represent
the classes (decisions)
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Y Another Example

= "Please wait to be seated" ...
= Decide: wait or go some place else?

= Variables that could influence your decision:

= Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)

Price: price range ($, $$, $$%)

= Raining: is it raining outside?

= Reservation: have we made a reservation?

= Type: kind of restaurant (French, Italian, Thai, Burger)

= EstimatedWait: estimated waiting time (0-10, 10-30, 30-60, >60)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 12
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= You collect
data to
base your
decisions
on:

continuous attribute

}ﬂ'-,‘c,c,n
Example Attributes Decision
Alt| Bar | Fri| Hun | Pat | Price| Rain | Res| Type | Est  Wait
X T| F F T |Some| $%% F T |French| 0-10 T
X, T| F|F| T |Ful]| §$ F | F | Thai [30-60| F
X3 E|T | E F |Some| § F F | Burger| 0-10 T
X4 T| F | T | T |Ful| $ F | F | Thai [10-30| T
Xs T| F | T| F | Full|$$$ | F | T [French| >60 | F
X6 F| T | F T |Some| $$% T T | ltalian | 0-10 T
Xy F| T | F | F |None|l $ T | F (Burger|0-10 | F
Xz F| F | F | T [Some| $$% T T | Thai | 0-10 T
X F| T | T | F | Ful | $ T | F [Burger| >60 | F
X | T| T | T | T |Ful | $%$ | F | T |ltalian|10-30| F
X1 F F F F | None $ F F | Thai | 0-10 F
Xpp | T| T | T| T |Ful| $ F | F |Burger[30-60| T
= Feature space: space of all possible feature vectors with all
possible combinations of features
= Here: 10-dimensional, 6 Boolean attributes, 3 discrete attributes, one
SS June 2022 Random Forests 13
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= A decision tree that classifies all "training data" correctly:

Patrons?

Note, you can use the same

None m Full attribute as often as you want

WaitEstimate?

Alternate? Hungry?

Ws No Yes

Reservation? Fri'Sat? Alternate?
No Ye

No Yes

Raumng"
No

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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= A better decision tree:

Patrons?
None m Full
Hungry?
Yes No
Type?

French Burger

= Also classifies all training data correctly!
= Decisions can be made faster
= Questions:
= How to construct (optimal) decision trees methodically?

= How well does it generalize/predict? (what is its generalization error?)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 15
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Y  Construction (= Learning) of Decision Trees

= By way of the following example

= Goal: predict adolescents' intention to smoke within next year
= Binary response variable IntentionToSmoke
= Four predictor variables (= attributes):

= liedToParents (bool) = subject has ever lied to parents about doing
something they would not approve of

= FriendsSmoke (bool) = one or more of the 4 best friends smoke

= Age (int) = subject's current age

= AlcoholPerMonth (int) = # times subject drank alcohol during past month
" Training data:

= Kitsantas et al.: Using classification trees to profile adolescent smoking
behaviors. 2007

= 200 adolescents surveyed

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 16
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A decision tree Fosek

= Root node splits all

nts
data points into two subsets

= Node 2 = all data points with

none one or more

FriendsSmoke = false

= Node 2 contains 92 points,
18% have label "yes",
82% have label "no" S "

Node 2 (n =92) Node 4 (n = 29) Node5(n 79)

= Ditto for the 1 1 1
other nodes - 08 - 08 08
~ 0.6 06 0.6
| - 0.4 : 0.4
- 02 : 0.2
| 0

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 17
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= Observation: a decision tree partitions feature space into
rectangular regions (like kd-tree):

friends who smoke

G. Zachmann

none

one or more

(1]

none one or more
<1 >1
\
Node 2 (n = 92) 1 Node 4 (n = 29) 4 Node 5 (n=79) 1
- 0.8 — 0.8 0.8
P
Node 4 5]
>
A - 0.6 - 0.6 0.6
3
o
=
5 - 0.4 - 0.4 0.4
[te]
w - 0.2 0.2 0.2
0 1 2 3 4 5 3
S
5 0 0 0
Qo

alcohol per month
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Selection of Splitting Variable and Cutpoint

Node 1 (n = 200)

1
= Why does our example work? ;é’;
= |n the root node, 58'2
IntentionToSmoke=yes none one or more
is 40% O\
Node 3 (n=108)
= |n node 2,
IntentionToSmoke=yes 0.6
is 18%, H
while in node 3
IntentionToSmoke=yes 5 > :
Is 60% Node 2 (n= 92)_ Node 4 (n= 29) 1 Node>(n = 79)_
= So, after first split 08 08
we can make 0.6 06
better predictions : 0.4 _ 04

_0.2 -_()‘2 ]
I o )
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1

_ 038
_ 0.6
_ 04

0.2

0

19



Bremen

Y

= |deally, a good attribute (and cutpoint) splits the samples into
subsets that are "all positive" or "all negative"

= Example (restaurant):

Q00000 000000
000000 000000
Type? Patrons?
ancwmrger NOM\UII
(o 00 0 0000 00
o ® 00 o0 o0 0000

To wait or not to wait is still at 50%

= Example (abstract): MoGunzom e boton
= LY ﬁ 08 0.8
= .o. oy o ® s 06
S |- --- c
data before split class distribution v '?5. '. 04 04
= |e ' ! ‘ 02 0.2
i L 2P cﬁg 0.8 b le g@ ‘.. ’ I I ) I I
A @ ® 0 0
9| 0e O 0o : ,
5|8 o Info Gain = 0.69 left right
e ® (] 0.4 o ' ' 1 1
@ ‘.‘ 0.2 ~ ..E c@g 0.8 08
a ° o &= g H “ °
= | o® 0.: 0.6 0.6
Q. z. d "
v ’ e ! ° 0.4 0.4
‘.‘ 02 02
c e LY . "
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Y Goals for Splitting Nodes

= We want:
(summed “diversity” within children) < (“diversity” in parent)

= Data points should be
= Homogeneous (by labels) within leaves
= Different between leaves
= Goal: try to increase purity within subsets

= Optimization goal in each node: find the attribute and a cutpoint that
splits the set of samples into two subsets with optimal purity

= This attribute is the "most discriminative" one for that data (sub-) set

= Question: what is a good measure of purity for two given subsets
of our training set?

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Y Digression: Information Gain in Politics/Journalism

= Politician X is accused of doing something wrong
= He is asked (e.g., by journalists): "Did you do it?"

= The opposition (assuming X is a member of the ruling party) is
asked: "Do you think he did it?"

= The answers are reported in the news ...

= What information do you gain?

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Information Gain

= Enter the information theoretic concept of information gain

= Imagine different events:
= The outcome of rolling a dice =6
= The outcome of rolling a biased dice = 6

= Each situation has a different amount of uncertainty whether or not
the event will occur

= Information = amount of reduction in uncertainty (= amount of
surprise if a specific outcome occurs)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 23
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" Quiz:
= | am thinking of an integer number in [1,100]
= How many yes/no questions do you need at most to find it out?
= Answer: [log, 100] =7

= Definition Information Value:

= Given a set §, the maximum amount of work required to determine a
specific element in § by traversing a decision tree is

log, ‘5‘

= Call this value the information value of being told the element, rather
than having to work for it (by asking binary questions)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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= | et Y be a random variable; we make one observation of the
variable Y (e.g., we draw a random ball out of a box) — value y

= The information we obtain if event "Y = y" occurs, i.e., the
information value of that event, is

# balls in box) 1

# y's in box W = —log p(y)

I[Yzy]=|0g2<

= "If the probability of this event happening is small and it does happen,
then the information value is large"

= Examples:
= Observing the outcome of coinflip — [ = — |og% — 1
= Observing the outcome of dice==x — | = —|og % — 258

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 25
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Y Entropy

= A random variable Y (= experiment) can assume different values
¥1, --., ¥n (i.e., the experiment can have different outcomes)

= What is the average information we obtain by observing the
random variable?

= |n other words: if | pick a value yjat random, according to their
respective probabilities — what is the average number of yes/no
questions you need to ask to determine it?

= |n probabilistic terms: what is the expected amount of information?
— captured by the notion of entropy

= Definition: Entropy
Let Y be a random variable. The entropy of Yis

H(Y) = E[I(Y)] = ZP(Y/)[[Y =yl = — ZP()//) log p(yi)
Units = bits | |

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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= |nterpretation: The number of yes/no questions (= bits) needed
on average to pin down the value of y in a random drawing

= Example: if Y can assume 8 values, and all are equally likely, then

8
11
H(Y) = —Z§I0g§ — log 2% = 3 bits

=1

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 27
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" |n general, if there are k different possible outcomes, then
H(Y) < log k

= Equality holds when all outcomes are equally likely

= With k = 2 (two outcomes), entropy 1
looks like this (p1+p2=1):

e
®
T

b
@

= The more the probability distribution

Entropy H

o
IS

deviates from uniformity,

0.2¢

the lower the entropy

= Entropy measures the impurity:

" " gx " : This distribution is less uniform =
ax Tyes X Yes Entropy is lower =

M [T )
4x "no Ox "no The node is purer

Balls-in-bin model

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 28
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= Entropy of printed English

= Let L = random variable, values = letters, picked randomly from a
random English text

« H(L) = —p(’E’)log p('E’) — p('T’) log p(’T") — p('A’) log p("A’) —

= 4.175 bits

= Entropy of English words "Rkl

= Statistics of large English texts show px = 0.1%

A

where pk = probability of word of rank k, T
up to rank 10000 (Zipf's law) : ‘

& 000!
2 X
" Th u S : \‘KREALLY

H ~ Z == |og2 = 9.36 bits

.

|
o
o
o
o
4
—

\\\\\\\\

10 20 40 60 100 200 400 1000 2000 4000 10,000
WORD ORDER

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 29
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= Now consider a random variable Y (e.g., the different classes/labels)
with an attribute X (e.qg., the first variable, x; 1, of the data points, x;)

= With every drawing of Y, we also get a value for the associated attribute X
= Assume that X is discrete, i.e., xj € {1, 2, ..., Z}
= Now consider only outcomes of Y that fulfill some condition, e.qg., xj=1

" The entropy of Y, provided that it assumes only values with x;=1:

(Y|XI — ]- Zp .yI|XI — 1) |ng(yl‘XI — ]-)
\ J

Y
Probability of y; occurring
as a value of Y,
where we draw Y
only from the subset that
contains only data points
that have attribute x;=1

Subset with x;=1

y=nw y=y2 y=y2

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 32
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= Overall conditional entropy:

H(YIX) = Zp

Probability that the attribute X
has value k

H(Y|x = k)

= — Zp(x = k) ZP()’i|Xi = k) log p(yilx; = k)

H(Y|x = 1)

H(Y|x = 2)
H(Y|x = 3)
G. Zachmann Massively Parallel Algorithms SS

June 2022

Random Forests
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Information Gain

= How much information do we gain if we disclose (or choose) the value
of one attribute X?

= Disclosure — splitting of the set of all data points into subsets

= Information gain = (information before split) — (information after split)
= reduction of uncertainty regarding label y by learning value of

attribute X
" The information gained by a split in a node of a decision tree:
IG(Y,X)=H(Y)— H(Y|X)
= Hopefully / usually H(Y|X) < H(Y)
" Goal: choose the attribute with the largest /G

= |n case of scalar attributes, also choose the optimal cutpoint

- In doing so, we basically convert the scalar attribute into a binary one (at that nodel!)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 34
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= Consider 2 options to split the root node of the restaurant example

EEEENE EEEEER
BHHEBDE BEHEHEOIDE

Type? Patrons?

None Some Full

HEEEN

= Labels of random variable Y € { "yes", "no" }

French

= Entropy at the root node:

1 1
H Y — p y: “yeS” |Og 7] ) —|_ p y: “nO” Iog i "
Y) =" 8 oy = ey TP 08 by = o)
1 1
= §|0g2+§|og2: 1

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 35
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Patrons?

None Some Full

TN 4 12
‘ ‘ ‘E 59 EE\

= Conditional entropy for split by #patrons:

H(Y | n) = p(n="full")-H(Y|n="full" )+
p(n="some")-H(Y|n="some" )+
p(n="none")-H(Y|n="none")

where n = the attribute "#patrons" € { "none", "some", "full" }

6 (Y3 1 3] X3 n X3 1 3] X3 n
H(Y|n)= — E(p(y: no")log p(y ="no") + p(y ="yes" ) log p(y ="yes ))
4 [ 1) i n i 1) i n
— 75 (P(y="n0") log p(y ="no") + p(y ="yes") log p(y ="yes"))
2 (Y3 1 3] 13 n X3 1 3] 13 n
— E(p(y: no")log p(y ="no") + p(y ="yes" ) log p(y ="yes ))
6 4 6 2 6 4 2
H(Y|n)= —(=log — + = log — — (01 1log 1 —(1log1 I
(Y|n) 12(6 og4+6og2) + 12(Oog0+ ogl) + 12( og1+ 0log0)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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= Conditional entropy for split by restaurant type:

H(Y |type) = — %(p(yz“nd') log p(y ="no") + p(y ="yes") log p(y ="yes"))
_ f_z(p(y:“no") log p(y ="n0") + p(y ="yes") log p(y ="yes"))
_ %(p(y:“no") log p(y ="n0") + p(y ="yes") log p(y ="yes"))
2 (ply="n0") log ply="n0") + ply ="yes" ) log ply ="yes"))

> 1 2 1. 9 42 4 2 4
H(Y 2.5 (2 y 2. 1 (2] 2
(Yltype) 12(2 °g1+2°g1) + 12( 85Ty ng)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests

<n
za
B

37



Bremen

W g

= Compare the information gains:

IG(Y, #patrons) = H(Y) — H(Y|#patrons)
=1 —0.585

IG(Y, type) = H(Y) — H(Y|type)
—1-1

= Result: learning the value of the attribute "#patrons" gives us more
information about the label of Y

= Compute the /G obtained by a split induced by each attribute

= |n the restaurant case, the optimum is achieved by the attribute
"#patrons" for splitting the set of data points at the root

G. Zachmann Massively Parallel Algorithms SS June 2022

Random Forests 38
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@ Another Example
= Given the following data points in the parent node:
Attrib. O 3 /2 3 2 8 6 1
Label ¢ GG R G G G R R G R
4 4 6 6
= Entropy: H=——log, — — —log, — = 0.97
by 10 %8210 10 8210
= One way to split them:
Atrib. 0 3 7 2 3|2 8 13
label G G R G| R R G G
4 4 1 1 ~
= Entropies: H, = ——log, - — = log, = = 0.72
> 2 > >~ H > H > H 0.85
3 3 2 5 after—ﬁ L+1O R —
Hr = — log, T E log, E = =0.97
Slight bug
= Information gain: /G = Hpetore — Hafter = 0.03 in the
numbers!

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 39
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= Another way to split them:

Arib. 0 1 2 2|3 3
label G G G G|G G
| 4 4 0 0
. Entroples: HL = —Z |Og2 Z — Z |Og2 Z =0 )
2 2 4 4
Hr = —=log, = — ~ log, = = 0.92
T8 %26 6 26

4
~ Hafter — EHL +

= Information gain: /G = Hyefore — Hafter = 0.42

G. Zachmann Massively Parallel Algorithms SS June 2022
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@ Bits and Pieces

= |f there are no attributes left:

= Can happen during learning of the decision tree, when a node contains
data points with same attribute values but different labels

= This constitutes error / noise in the training data

= Stop construction here, use majority vote (i.e., discard erroneous point)
= |f there are leaves with no data points:

= While classifying a new data point

= Just choose the majority vote of the parent node

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Classification at Runtime

= Given an (unseen) data point x, traverse the tree, testing one of

its attributes at each node

Test attribute k
against
threshold 69

Xk < B0

Test attribute i
against
threshold 0

X[<H'|/

\Xi201

4 )

node 3

\class distribution/

f node 4 A

Xk = 6o

Test attribute j
against
threshold 6>

X/'<92/

4 )

node 5
-

\class distribution/

Massively Parallel Algorithms SS

\class distribution/

June 2022
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4 )

node 6

\class distribution/
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Y Expressiveness of Decision Trees

= Assume all variables (attributes and labels) are Boolean

What is the set of Boolean functions that can be represented by a
decision tree?

= Answer: all Boolean functions!
= Proof:

= Given any Boolean function

= Convert it to a truth table

= Consider each row as a data point, output of the fct = label of data point

= Construct a DT over all data points / rows

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 46
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= If Yis a discrete, numerical variable, then DTs can be regarded as
piecewise constant functions over the feature space:

= DTs can approximate any function

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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W Problems of Decision Trees

= Error propagation:
= Learning a DT is based on a series of local decisions

= What happens, if one of the nodes implements the wrong decision?
(e.g., because of an outlier)

= The whole subtree will be wrong!

= QOverfitting: in general, it means the classifier performs extremely
well on the training data, but very poorly on unseen data — low
generalization capability

= When overfitting occurs, the DT has "learned the noise in the data"

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 48
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@ Example for the instability of single decision trees

none one or more
e = none one or more
age alcohol per month /
— — Node 2 Node 3
o 1 o 1
<12 >12 <4 >4 e c
/ \ / \ - 0.8 0.8
Node 3 Node 4 Node 6 Node 7
g - - - : i
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6 0.4
0.4 0.4 04 0.4 0.2
7] 02 @ 02 g 02 o 0.2 @ '
- 0 - 0 = 0 - 0 - 0
{ Friends smoke
S
none  one or more none  one or more
age
<12 >12
# N
Node 3 Node 4 Node 5 Node 5
1 o 1 o 1 o 1 o 1
© 08 © 08 0.8 < 08 0.8
0.6 0.6 0.6 0.6 0.6
0.4 0.4 0.4 . 0.4 0.4
@ 0.2 @ 0.2 @ 0.2 @ ~ 0.2 @ 0.2 @ 0.2
> o > o - 0 > o - o - 0

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 49
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@ "The Wisdom of Crowds" [James Surowiecki, 2004] ""-53%

= Francis Galton’s experience at the 1906 West of
England Fat Stock and Poultry Exhibition

= Jack Treynor’s jelly-beans-in-the-jar experiment
(1987)

= Only T of 56 students' guesses came closer to the
truth than the average of the class’ guesses

= Who Wants to Be a Millionaire?

= Call an expert? — 65% correct

= Ask the audience? — 919% correct

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests 50
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w Example (Thought Experiment)

= "Which person from the following list was not a member of the

Monkees?"
(A) Peter Tork (C) Roger Noll
(B) Davy Jones (D) Michael Nesmith

= (BTW: Monkeys are a 1960s pop band, comprising 3 band members)
= Correct answer: the non-Monkee is Roger Noll

= Now imagine a crowd of 100 people with this distributed knowledge:
/ know 3 of the Monkees
10 know 2 of the Monkees
15 know 1 of the Monkees
68 have no clue

So "Noll" will garner, on average, 34 votes versus 22 votes for each of
the other choices
= (68/4 + (15/3)/3*3 + (10/3)/2*3 + 7 = 34)
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= Implication: one should not spend energy trying to identify an
expert within a group, but instead rely on the group’s collective
wisdom

= Counter example:
= Kindergartners guessing the weight of a Boeing 747
= Prerequisites for crowd wisdom to emerge:

= Some knowledge of the truth must reside with some group members
(— weak classifiers)

= Opinions must be independent
= Knowledge must be objective (no subjective opinions)

= Works best for quantifiable things (need to calculate the average)
("if you can count it, you can crowd it")
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Y  Digression: the Stupidity of Crowds

% )
..
<n
E-X3)

= Examples:

= Financial crisis in 2008

= Bubble formation in social networks
= Social experiment (N =144) [2011]:

= Several estimation tasks (country's population, etc.)

= Social influence effect: diversity diminishes,

= Conditions: no info aggregate info

- No info: subjects had no information about 1000 |
other participants' guesses O :

. _ © 800 | :

- Aggregate info: subjects could reconsider % :
their estimate after gaining some g 600 | -
information about the estimates of others @ 4
2 400 i

o A :

o ®

8

but collective error does not

200 848 -
= Confidence effect: subjects become o-

more certain about their guesses 12 3 4 51 2 3 45
estimation round
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Digression: Francis Galton

Cousin of Charles Darwin

"Father" of statistics

Incidentally, he also invented finger printing

= He also published the "scientific" way to cut cakes in Nature 1906:
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Y@  The Random Forest (RF) Method

Cece

AT
o®
E-X3)

e
X
B

<N

= One kind of so-called ensemble (of experts) methods

= |dea: predict class label for unseen data by aggregating a set of
predictions (= classifiers learned from the training data)

Original
D Training data

v

data set D!

Step 1: * * * * Must encode the
Create Multiple D, D,#""""BD, D, S same distribution
Data Sets ¢ l as the original

!

Step 2: Each classifier =

—

Build Multiple C, C, C,., C, \ < one decision tree
Classifiers i * * *
Step 3:

Combine

Classifiers
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Randomizations During the Construction of RF's

= Generating the data sets for learning multiple trees:

= Generate a number of random sub-sets L1, L5, ... from the original
training data L, L£; C L . There are basically two methods:

1. Bootstrapping: randomly draw samples from £, with replacement,
size of new data = size of original data set; or,

2. Subsampling: randomly draw samples from £, without replacement,
size of new data < size of original data set

= New data sets reflect the same random process as the orig. data, but
they differ slightly from each other and the original set due to random
variation

= Resulting trees can differ substantially (see earlier slide)
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= Growing the trees:

= At each node, a random subset of attributes (= predictor variables/

features) is preselected; only from those, the one with the best
information gain is chosen

- NB: an individual tree is not just a DT over a subspace of feature space!

= Each tree is grown without any stopping criterion, i.e., until each leaf
contains data points of only one single class

= Naming convention for 2 essential parameters:

= Number of trees = ntree

= Size of random subset of variables/attributes at each node = mtry

= Rules of thumb:
= ntree =100 ... 300

= mtry = sqrt(d) , with d = dimensions of the feature space

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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" The learning algorithm:

input: learning set L
for t = 1.. .ntree:
build subset Lt from L by random sampling
learn tree T+ from Lt:
at each node:
randomly choose mtry features
compute best split from only those features
grow each tree until leaves are perfectly pure
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@ A Random Forest Example for the Smoking Data Set
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Y Using a Random Forest for Classification

= With a new data point:
= Traverse each tree individually using that point

= Gives ntree many class labels

Tree, Tree, Tree; Tree,iree
9 @ @ ® @ @ ® @
@ @ ® @
®@ @ ﬂ ﬂ; ﬂ ®
\
Class=A Class = A Class =B Class=C

= Take majority of those class labels

= Sometimes, if labels are cardinal numbers, (weighted) averaging
makes sense

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Why Does it Work?

= Make following assumptions:
= The RF has ntree many trees (classifiers)
= Each tree has an error rate of €

= All trees are perfectly independent! (no correlation among trees)

= Probability that the RF makes a wrong prediction:

ntree
ntree I ntree—i
ERF = Z ( ; )5(1—5)“ )

045
= Example: | I 538252%
individual error rate e= 0.35, £ oas| ol
ntree = 60 — " el Eﬁ: ik
error rate of RF egrg = 0.01 oos |

0 L 1 1 1 1
20 40 60 80 100 120 140 160 180 200
ntrees
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Variants of Random Forests

= Regression trees:

= Variable Y (dependent variable) is continuous

- l.e., no longer a class label

= Goal is to learn a function R? — R that generalizes the training data

= Example:

Subject
p <0.001

{309, 335} {308, 350}
Subject
p <0.001
335
AN
Node 3 (n =10) Node 4 (n =10) Node 5 (n = 20)
492 492 492
o
°
o [¢]
o
[¢] o °e
6o o9 57 e © °
°__e__0__o__o——e———g——o——9‘—
177 177 177
-0.9 9.9 -0.9 9.9 -0.9
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Massively Parallel Algorithms

SS June 2022

9.9

2.0
..

<N

E-X3)

e e e

Random Forests



Bremen

. o~
4 =

» e.d =
W E

! o

U > .
¥, cc =

o

"

= Extremely randomized trees (ERTSs):
= Do not find the optimal threshold for splitting the training set

= |Instead, just pick a random value in the interval of the feature's values

(%)

X,'2

= |nstead, test a linear combination of k = mtry features: : :
= Variant "Forest-RC": \3k) \Xik)

- Randomly choose I different vectors of coefficients a; € [-1,1],i=1,...,k

= Oblique random forests: /a \
1
= Do not test just one feature a5

<6

- Pick that vector of aj's that maximizes information gain
= Random ferns:

= All nodes on the same level within a tree test the same attribute
against the same threshold

= Advantage: all decision tests at runtime can be done in parallel

= Disadvantage: need deeper trees
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Features of Random Forests

= "Small n, large d"

= RFs are well-suited for problems with many more variables (d =
dimensions in the feature space) than observations / training data (n)

= Nonlinear function approximation
= RFs can approximate any unknown function
= RF's can solve the "XOR problem"

= In an XOR truth table, the two variables show no effect at all

- With either split variable, the information gain is O
= But there is a perfect interaction between the two variables

= Random selection of mtry < d variables can help in such cases
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Y Tips and Tricks "

= Qut-of-bag error estimation:
= For each tree Tj, a training data set £; C £ was used
= Use L\ L; (the out-of-bag data set) to test the prediction accuracy

= Handling of missing values:

= Occasionally, some data points contain a missing value for one or

more of its variables (e.g., because the corresponding measuring
instrument had a malfunction)

= When information gain is computed, ignore those data points with a
missing value at the currently evaluated variable

= During splitting, use a surrogate that best predicts the values of the
splitting variable (in case of a missing value)

- Assume data point has class label I, its m-th variable is missing: compute

median of m-th variable of all data points in class I, use this as surrogate for
all missing m-th variables of all data points
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= Randomness:
= Random forests are truly random

= Consequence: when you build two RFs with the same training data,
you get slightly different classifiers/predictors

- Fix the random seed, if you need reproducible RFs
= Suggestion: if you observe that two RFs over the same training data
(with different random seeds) produce noticeably different prediction

results, and different variable importance rankings, then you should
adjust the parameters ntree and mtry

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Remarks on RFs

" Do random forests overfit?

= The evidence is inconclusive (with some data sets it seems like they
could, with other data sets it doesn't)

= If you suspect overfitting: try to build the individual trees of the RF to a
smaller depth, i.e., not up to completely pure leaves

= Better explainability than CNN'’s:

= RF’s can provide information on which variables/features are
important for the decision making (and which are unimportant)

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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Parallel Construction of Random Forests

= Naive method: one thread per tree (not massively parallel)

= Better method: one thread per node

" |n the following: "data point" actually means "index into data
point array", i.e., threads always work with indices only

= General idea:
= Build all trees breadth-first

= |n each iteration, each thread
- gets a task = node of one of the DT's, and a list of data points,
- determines input variable i and cutpoint 8 for optimal split

= Produces two new lists and allocates child nodes

G. Zachmann Massively Parallel Algorithms SS June 2022 Random Forests
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The Algorithm in More Detalil

create ntrees many subsets of training data
assign these subsets to the root nodes

repeat mtry many times:
pick a random feature i
sort all data points by value of feature i
initialize left/right histograms, left h. = empty
loop with k over data points left to right:
conceptually move data point k from right to
left subset — new 0

-<< update left/right histograms

compute new information gain (IG)
if new IG is better:
save new 6 and IG
if feature i yields better IG:
save new feature index i, 6, IG
create child nodes
split input data points by feature i and 6
S and create two subsets, one for each child node A

5‘ cG

f/ﬁhile there are still inner nodes: -\\

VR

|9]|eded ul paindaxg
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Achieving Higher Parallelism

= At each node: calculate IG for mtry many features
and a fixed number, s, of potential cutpoints

= et n=#inner nodes on the current level
= Launch n blocks of sxmtry many threads

= Each thread computes the IG for one specific node, one specific
feature /, one specific cutpoint 6

= Qutput is a matrix of IG's per node, pick the maximum for the split

- Segmented max-scan over array of nxsxmtry elements, n segments, one
segment = s xmtry many |G values

= Advantage: all threads in a block work on the same set of data points
— |oad into shared memory
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Updating the Histogram

= Given two sets of data points (left and right),
and the associated histograms h; and hy

= Move one data point from right to left,
let ye{y1, y2, ..., y1} be its label

" The update method:

updateHistograms( hl, hr, y ):
hr[ yv] =1
hl1[ yv ] +=1
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; &
U (0
U Training Time Depending on Size of Dataset r
gpuRF —— gpuERT  «seve- CudaRF v WekaRF —— FastRF = CPpuERT e
105_"'" 1 10
| - .+
1L L P | R S
B e L L o T ST L ; |
L i g ——
0.1 oo ; 2 0.1 FFRPR——
0.01 L A S S T S S oop L o+
0~ 0 Y % v % D © v v v Y % v Y D 4G
% of features in datasets from the total (15-1500)
gpuRF / gpuERT: the presented method for training RF and ERT on the GPU;
CpuERT: same algorithm, but implemented on the CPU running 32 threads;
CudaRF: older method on GPU
WekaRF, FastRF: multi-threaded CPU versions
Dataset | Nr Instances ~ Nr Features mtry Nr Missing values
Adult 32561 14 4 4262
Mushroom 8124 22 5 2480
Spambase 4601 57 6 0
Kr-vs-kp 3196 36 6 0
Eula-Freq 996 1268 11 0
Breast-Cancer-Wis 569 30 5 0
Skin-Disorder 462 1669 11 0
House-Votes 435 16 5 392
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@ Some Code Optimization Tricks (not Only for GPU's)

= |nstead of

if ( x[1] < threshold )
child node ptr = left child ptr
else

child node ptr right child ptr

use

child node ptr = left child ptr +
static cast<int>( x[i] >= threshold )

= Use half-precision floats for storing the training data set

= FP16 = 16-bit floating point type half (since CUDA 7.5)
= |ncreases bandwidth, allows 2 X data in shared memory

= Lower precision is OK, since data set contains noise anyways
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" Use log2f () instead of log2f ()
= Less precision, but faster

= Loss in precision does not matter here, because of all the other
randomizations

" Use fdividef (x,y) instead of division operator (x/y)

= Twice as fast
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Y Application: Handwritten Digit Recognition

= D ] 000000008800 000
ata set: V2 U U LR - W B N A B A B
, . A3rz22azzplz222J
= Images of handwritten digits 3333%33333333333%
UM 4 Q¢d sS4 ¢ 3
= 10 classes Ss5Ssr(ISsssSssy e
= Normalization: 20x20 pixels, ?Si?.ﬁﬁ??ﬁ?f}?éi; &
binaryimages FLET IT59 8858 85%8 75
2792993797289 49797

= Naive feature vectors (data points):
= Each pixel = one variable — 400-dim. feature space over {0,1}
= Recognition rate: ~ 70-80 %

= Better feature vectors by domain knowledge:

= For each pixel I(i,j) compute: H(i,j)=1(i,j)NI(i,j+2)
V(i,j)=1(i,j) NI(i +2,J)
NG, ) =T, ))NI(i+2,j+2)
S(H)=I(1L)NI[I+2,j—2)

and a few more ...
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= Feature vector for an image = ( all pixels I(i,j) , all H(i,j), V(i,j), ...)

-

= Feature space = ca. 1400-dimensional = 1400 variables per data point

= Classification accuracy = ~93%

= (NB: it was a precursor of random forests)
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= Other experiments on (] | |

handwritten digit recognition: et

Level 2

= Feature vector = all pixels of an

Level 3

image pyramid

Level 4

= Recognition rate: ~ 93%

= Dependence of T
recognition rate S
on ntree and mtry: ,,,,, ffé :

______

Recognition rates

el (ﬁ ‘“eeS)
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Y Body Tracking Using Depth Images (Kinect)

= The tracking / data flow pipeline:

Capture
depth image &
remove bg

[Shotton et al.: Real-Time Human Pose Recognition
in Parts from Single Depth Images; CVPR 2011 ]

G. Zachmann Massively Parallel Algorithms
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body parts
per pixel

A

= Wy

M

Cluster pixels to
hypothesize
body joint
positions

s 4&.'

/+

+ \+

Fit skeleton
model
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The Training Data

Record mocap
500k frames
distilled to 100k poses

U

Retarget to several models

Render models: store depth & body part ID

':? U ?": ¢
I S3 Ne ¥

o>
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@ Synthetic and Real Data o s

synthetic real
(train & test) (test)

For each pixel in the synthetic depth image, we know its correct class (= label).
Sometimes, such data is also called ground truth data.
For the real test data, the pixels have been hand labeled.
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Y  Classifying Pixels

= Goal: for each pixel determine

the most likely body part (head,

shoulder, knee, etc.) it belongs
to

= Classifying pixels = compute
probability P( cx ) for pixel x =
(x,y), where cx = body part

= Task: learn classifier that returns

the most likely body part class
cx for every pixel x

= |dea: consider a neighborhood
around x (moving window)

G. Zachmann Massively Parallel Algorithms SS

June 2022

Image windows move
with classifier
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Y Fast Depth Image Features

= For a given pixel, consider all depth
comparisons inside a window

= The feature vector for a pixel x are all
feature variables obtained by all
possible depth comparisons inside

the window:
A

f(x, A) = D(x) — D(x + D(x))

where D = depth image,
A = (4x, 4y) = offset vector,
and D(background) = large constant

= Note: scale 4 by 1/depth of x, so that
the window shrinks with distance

= Features are very fast to compute

G. Zachmann Massively Parallel Algorithms SS June 2022
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@ Training of a Single Decision Tree

= Conceptually, the training set £ = { all feature vectors (= all f(x,
A) ) of all pixels of all training images }, together with the correct
labels (= body part)

" Training a decision tree amounts to finding 4 and 6 such that the
information gain is maximized

C

P(c)
L = { feature vectors ( f(xj, 41), ..., f{(Xi, 4p) )
with labels c(x)) | for all x;in all images }
body part ¢ f(x,A) >0
PO no ves “
C Ly I‘_Il_ll_l
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@ Classification of a Pixel at Runtime # o

= Toy example: distinguish lower (L) and upper (U) parts of the body
= Note: each node only needs to store 4 and 6!

= For every pixel x in the depth image,

f(x, A1) }O\

no yes

f(x, Ap) > 6, b

no yes P(c) ‘ I
o 0 A

P(c) P(c)
| (1)
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Y Training a Random Forest
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= Train ntree many trees, for each one introduce lots of randomization:

= Random subset of pixels of the training images (~ 2000)

= At each node to be trained, choose a

random set of mtry many 4 values ground truth

= Optimize 6 for each 4, pick optimal pair ‘
= Note: the complete feature vectors are : \
never explicitly constructed (only conceptually) "\
55% -
2 inferred body parts (most likely)
P 5.50% - 1 tree 3 trees 6 trees
x ; & 48
5 G s £ 4.4 P
% ; § g 1

40%IIIIII n
1T 2 3 4 5 6

Number of trees
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= Depth of trees: check whether it is really best to grow all DTs in
the RF to their maximum depth

65% -
60% -
55% -
50% -

45% -

N

3

)
|

=&—900k training images
=15k training images

Average per-class accuracy

35% -

30% -
8 12 16 20
Maximum depth of trees
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@ More Parameters

za
B

<N

50% - Maximum offset 4 (pixel meters)
3 48% -
S —
3 46% -
s 44% -
& 42% -
Q9 40% -
L 38% -
g 36% -
Z 32% - 260 ground
30% T T T T T 1 tl'uth
0 50 100 150 200 250 300
6% Number of training |magw
50% /
é >\4-00/0 /
B ©)
S £ 30%
> 3 / Synthetic test set ——Real test set
C ®20% :
<
10%

10 100 1,000 10,000 100,000 1,000,000
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Y Video 4

Input depth image (bg removed) Inferred body parts posterior
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